

 Navigation

 	
 index

 	
 next |

 	BehaveToolkit 0.1.0 documentation

Welcome to BehaveToolkit’s documentation!

BehaveToolkit provides integration between Sublime Text 3 and Behave.

Features:

	Run specific scenarios

	Generate step implementations

	Go to step implementation

	Highlight unimplemented steps

Contents:

	Installation
	Package Control

	Via Git

	Getting Started
	Setup

	Generating step implementations

	Generating missing step implementations

	Running behave

	Commands
	Generate Step Implementation

	Generate Missing Step Implementations

	Go To Step Implementation

	Run behave

	Configuration
	behave_command

	Troubleshooting

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Mitchel Cabuloy.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BehaveToolkit 0.1.0 documentation

Installation

Package Control

	Install the Sublime Text Package Control [https://packagecontrol.io/] plugin if you don’t have
it already.

	Open the command palette and start typing
Package Control: Install Package.

	Enter BehaveToolkit.

Via Git

You can also clone the repo directly to your Packages folder if you so
wish:

on a Mac
$ cd "$HOME/Library/Application Support/Sublime Text 3/Packages"
on Linux
$ cd $HOME/.config/sublime-text-3/Packages
on Windows (PowerShell)
$ cd "$env:appdata\Sublime Text 3\Packages\"

$ git clone https://github.com/mixxorz/BehaveToolkit

 Copyright 2015, Mitchel Cabuloy.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BehaveToolkit 0.1.0 documentation

Getting Started

Setup

Make sure you have behave and BehaveToolkit installed.

Let’s create our project structure

myproject/
 features/
 steps/
 myfeature.feature

Open the project directory in sublime:

$ subl myproject/

Then, let’s add a simple scenario.

myproject/features/myfeature.feature
Feature: My feature

 Scenario: Addition between two numbers
 Given the first number is "1"
 And the second number is "1"
 When I add them together
 Then I should get "2"

Once you hit save, you should see undefined steps get highlighted.

Generating step implementations

Let’s try to generate some step implementations. Place the cursor over a step,
open up the command palette and select
Behave: Generate Step Implementation. Choose “Create a new file”. You should
see a new file open with the following content.

from behave import given, when, then

@given(u'the first number is "1"')
def the_first_number_is_1(context):
 raise NotImplementedError(u'STEP: the first number is "1"')

Let’s save this file under myproject/features/steps/steps.py. When you go
back to myfeature.feature, you should see the step be cleared.

Generating missing step implementations

Let’s generate the rest of the steps. With the feature file open, let’s
open up the command palette and select
Behave: Generate Missing Step Implementations.

You’re now given a choice of either creating a new file, or an existing step
file. Let’s choose steps.py.

You should now see the generate step definitions pasted inside steps.py.

myproject/features/steps/steps.py
from behave import given, when, then

@given(u'the first number is "1"')
def the_first_number_is_1(context):
 raise NotImplementedError(u'STEP: the first number is "1"')

@then(u'I should get "2"')
def i_should_get_2(context):
 raise NotImplementedError(u'STEP: I should get "2"')

@given(u'the second number is "1"')
def the_second_number_is_1(context):
 raise NotImplementedError(u'STEP: the second number is "1"')

@when(u'I add them together')
def i_add_them_together(context):
 raise NotImplementedError(u'STEP: I add them together')

Once you hit save and go back to the feature file, you should see that all
steps are now cleared.

Running behave

In lieu with the spirit of TDD, let’s watch the tests fail.

Place the cursor over a scenario, open the command palette and select
Behave: Run Behave. You should see the test failing.

Feature: My feature # features/myfeature.feature:1

 Scenario: Addition between two numbers # features/myfeature.feature:3
 Given the first number is "1" # features/steps/steps.py:14
 Traceback (most recent call last):
 File "/Users/mixxorz/.pyenv/versions/2.7.10/lib/python2.7/site-packages/behave/model.py", line 1456, in run
 match.run(runner.context)
 File "/Users/mixxorz/.pyenv/versions/2.7.10/lib/python2.7/site-packages/behave/model.py", line 1903, in run
 self.func(context, *args, **kwargs)
 File "features/steps/steps.py", line 16, in the_first_number_is_1
 raise NotImplementedError(u'STEP: the first number is "1"')
 NotImplementedError: STEP: the first number is "1"

 And the second number is "1" # None
 When I add them together # None
 Then I should get "2" # None

Failing scenarios:
 features/myfeature.feature:3 Addition between two numbers

0 features passed, 1 failed, 0 skipped
0 scenarios passed, 1 failed, 0 skipped
0 steps passed, 1 failed, 3 skipped, 0 undefined
Took 0m0.000s

Let’s implement the tests.

myproject/features/steps/steps.py
from behave import given, when, then

@given(u'the first number is "{num:d}"')
def the_first_number_is_1(context, num):
 context._first_num = num

@then(u'I should get "{num:d}"')
def i_should_get_2(context, num):
 assert num == context._sum

@given(u'the second number is "{num:d}"')
def the_second_number_is_1(context, num):
 context._second_num = num

@when(u'I add them together')
def i_add_them_together(context):
 context._sum = context._first_num + context._second_num

When you run behave, the tests should now pass:

Feature: My feature # features/myfeature.feature:1

 Scenario: Addition between two numbers # features/myfeature.feature:3
 Given the first number is "1" # features/steps/steps.py:14
 And the second number is "1" # features/steps/steps.py:19
 When I add them together # features/steps/steps.py:4
 Then I should get "2" # features/steps/steps.py:9

1 feature passed, 0 failed, 0 skipped
1 scenario passed, 0 failed, 0 skipped
4 steps passed, 0 failed, 0 skipped, 0 undefined
Took 0m0.001s

Specific scenarios

If you want, you can run only specific scenarios. Let’s add a new scenario,
with different numbers this time.

Scenario: Addition between different numbers
 Given the first number is "2"
 And the second number is "3"
 When I add them together
 Then I should get "5"

Place the cursor over the second scenario. When you run behave, it will only
run the scenario under your cursor.

Run all scenarios in the current feature

If you want to run all scenarios in the current feature, just place your cursor
on the first line of the feature file, and run behave.

Run all features

If you want to run all scenarios in all features, just run behave without a
feautre file open.

 Copyright 2015, Mitchel Cabuloy.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BehaveToolkit 0.1.0 documentation

Commands

Generate Step Implementation

Generates step implementations for steps under the cursor(s).

	Default Keybinding: None

	Command: bt_generate_step_implementation

Gives you the ability to quickly generate implementations for steps. Place the
cursor under a step (e.g. Given the first number is "1"), open the command
palette and select Behave: Generate Step Implementation. You will be
prompted whether you want to create a new file for this step implementation, or
to paste it to an existing steps file.

You can also generate multiple step implementations at once by placing cursors
on multiple steps.

Generate Missing Step Implementations

Generates step implementations for missing steps.

	Default Keybinding: None

	Command: bt_generate_missing_step_implementations

This command is just a convenience command to generate step implementations for
all unimplemented steps in the open feature file.

Go To Step Implementation

Navigate to the step implementation of the step under the cursor.

	Default Keybinding: None

	Command: bt_go_to_step_implementation

Does what it says on the tin.

Run behave

Runs behave within the current context.

	Default Keybinding: None

	Command: bt_run_behave

This command is activated by selecting Behave: Run behave on the command
palette.

	If the cursor is within a Scenario definition, the command will only run that
scenario.

	If the cursor is above the first Scenario, the command will run all Scenarios
in that Feature.

	If a feature file isn’t visible, the command will run all Scenarios in all
Features

	If there are multiple cursors, the command will run all Scenarios that are
under the cursors.

 Copyright 2015, Mitchel Cabuloy.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	BehaveToolkit 0.1.0 documentation

Configuration

behave_command

The command used to run behave.

By default, BehaveToolkit tries to find behave in your environment.
Change this setting if you want to specifically set how behave gets
executed.

Open Preferences > Package Settings > BehaveToolkit > Settings - User and
paste the following (for example):

{
 "behave_command": ["/Users/mixxorz/.virtualenvs/myproject/bin/behave"]
}

You can override the setting in your the sublime-project file of your
project too. This will take priority over the global settings.

myproject.sublime-project

{
 "folders":
 [
 {
 "path": "/Users/mixxorz/Projects/myproject"
 }
],
 "settings":
 {
 "behave_command": ["/Users/mixxorz/.virtualenvs/myproject/bin/behave"]
 }
}

If you’re using behave-django [https://github.com/mixxorz/behave-django], another project by me which integrates
behave and Django, you can configure behave_command like this.

{
 "behave_command": [
 "/Users/mixxorz/.virtualenvs/myproject/bin/python",
 "/Users/mixxorz/Projects/myproject/manage.py",
 "behave"
]
}

 Copyright 2015, Mitchel Cabuloy.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	BehaveToolkit 0.1.0 documentation

Troubleshooting

One of the popular reasons for BehaveToolkit not working is behave not
working. A good rule of thumb is that, if behave works, then
BehaveToolkit should work.

Project root directory

Sublime should be opened with the directory where you would run behave. If you
followed the Getting Started guide, you would notice that we opened
Sublime on the myproject/ folder. This is also the directory where we would
run behave. Sure enough, if we run behave in this folder, it will work.

Behave can’t be found

There may be instances where the behave binary cannot be found on your
system. In which case, you should look at Configuration.

Other issues

If you’re still having problems, don’t hesitate to ask questions by opening an
issue on our GitHub issues page [https://github.com/mixxorz/BehaveToolkit/issues].

 Copyright 2015, Mitchel Cabuloy.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	BehaveToolkit 0.1.0 documentation

Index

 Copyright 2015, Mitchel Cabuloy.
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

search.html

 Navigation

 		
 index

 		BehaveToolkit 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Mitchel Cabuloy.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

